Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
2.
Res Pract Thromb Haemost ; 7(2): 100085, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2242005

ABSTRACT

Background: Severe COVID-19 is associated with marked endothelial cell (EC) activation that plays a key role in immunothrombosis and pulmonary microvascular occlusion. However, the biological mechanisms through which SARS-CoV-2 causes EC activation and damage remain poorly defined. Objectives: We investigated EC activation in patients with acute COVID-19, and specifically focused on how proteins stored within Weibel-Palade bodies may impact key aspects of disease pathogenesis. Methods: Thirty-nine patients with confirmed COVID-19 were recruited. Weibel-Palade body biomarkers (von Willebrand factor [VWF], angiopoietin-2 [Angpt-2], and osteoprotegerin) and soluble thrombomodulin (sTM) levels were determined. In addition, EC activation and angiogenesis were assessed in the presence or absence of COVID-19 plasma incubation. Results: Markedly elevated plasma VWF antigen, Angpt-2, osteoprotegerin, and sTM levels were observed in patients with acute COVID-19. The increased levels of both sTM and Weibel-Palade body components (VWF, osteoprotegerin, and Angpt-2) correlated with COVID-19 severity. Incubation of COVID-19 plasma with ECs triggered enhanced VWF secretion and increased Angpt-2 expression, as well as significantly enhanced in vitro EC tube formation and angiogenesis. Conclusion: We propose that acute SARS-CoV-2 infection leads to a complex and multifactorial EC activation, progressive loss of thrombomodulin, and increased Angpt-2 expression, which collectively serve to promote a local proangiogenic state.

4.
J Thromb Haemost ; 19(10): 2546-2553, 2021 10.
Article in English | MEDLINE | ID: covidwho-1348159

ABSTRACT

BACKGROUND: Persistent symptoms including breathlessness, fatigue, and decreased exercise tolerance have been reported in patients after acute SARS-CoV-2 infection. The biological mechanisms underlying this "long COVID" syndrome remain unknown. However, autopsy studies have highlighted the key roles played by pulmonary endotheliopathy and microvascular immunothrombosis in acute COVID-19. OBJECTIVES: To assess whether endothelial cell activation may be sustained in convalescent COVID-19 patients and contribute to long COVID pathogenesis. PATIENTS AND METHODS: Fifty patients were reviewed at a median of 68 days following SARS-CoV-2 infection. In addition to clinical workup, acute phase markers, endothelial cell (EC) activation and NETosis parameters and thrombin generation were assessed. RESULTS: Thrombin generation assays revealed significantly shorter lag times (p < .0001, 95% CI -2.57 to -1.02 min), increased endogenous thrombin potential (p = .04, 95% CI 15-416 nM/min), and peak thrombin (p < .0001, 95% CI 39-93 nM) in convalescent COVID-19 patients. These prothrombotic changes were independent of ongoing acute phase response or active NETosis. Importantly, EC biomarkers including von Willebrand factor antigen (VWF:Ag), VWF propeptide (VWFpp), and factor VIII were significantly elevated in convalescent COVID-19 compared with controls (p = .004, 95% CI 0.09-0.57 IU/ml; p = .009, 95% CI 0.06-0.5 IU/ml; p = .04, 95% CI 0.03-0.44 IU/ml, respectively). In addition, plasma soluble thrombomodulin levels were significantly elevated in convalescent COVID-19 (p = .02, 95% CI 0.01-2.7 ng/ml). Sustained endotheliopathy was more frequent in older, comorbid patients, and those requiring hospitalization. Finally, both plasma VWF:Ag and VWFpp levels correlated inversely with 6-min walk tests. CONCLUSIONS: Collectively, our findings demonstrate that sustained endotheliopathy is common in convalescent COVID-19 and raise the intriguing possibility that this may contribute to long COVID pathogenesis.


Subject(s)
COVID-19 , Aged , Biomarkers , COVID-19/complications , Humans , SARS-CoV-2 , von Willebrand Factor , Post-Acute COVID-19 Syndrome
5.
J Thromb Haemost ; 19(8): 1914-1921, 2021 08.
Article in English | MEDLINE | ID: covidwho-1247253

ABSTRACT

BACKGROUND: Consistent with fulminant endothelial cell activation, elevated plasma von Willebrand factor (VWF) antigen levels have been reported in patients with COVID-19. The multimeric size and function of VWF are normally regulated through A Disintegrin And Metalloprotease with ThrombSpondin Motif type 1 motif, member 13 (ADAMTS-13)--mediated proteolysis. OBJECTIVES: This study investigated the hypothesis that ADAMTS-13 regulation of VWF multimer distribution may be impaired in severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection contributing to the observed microvascular thrombosis. PATIENTS AND METHODS: Patients with COVID-19 (n = 23) were recruited from the Beaumont Hospital Intensive Care Unit (ICU) in Dublin. Plasma VWF antigen, multimer distribution, ADAMTS-13 activity, and known inhibitors thereof were assessed. RESULTS: We observed markedly increased VWF collagen-binding activity in patients with severe COVID-19 compared to controls (median 509.1 versus 94.3 IU/dl). Conversely, plasma ADAMTS-13 activity was significantly reduced (median 68.2 IU/dl). In keeping with an increase in VWF:ADAMTS-13 ratio, abnormalities in VWF multimer distribution were common in patients with COVID-19, with reductions in high molecular weight VWF multimers. Terminal sialylation regulates VWF susceptibility to proteolysis by ADAMTS-13 and other proteases. We observed that both N- and O-linked sialylation were altered in severe COVID-19. Furthermore, plasma levels of the ADAMTS-13 inhibitors interleukin-6, thrombospondin-1, and platelet factor 4 were significantly elevated. CONCLUSIONS: These findings support the hypothesis that SARS-CoV-2 is associated with profound quantitative and qualitative increases in plasma VWF levels, and a multifactorial down-regulation in ADAMTS-13 function. Further studies will be required to determine whether therapeutic interventions to correct ADAMTS-13-VWF multimer dysfunction may be useful in COVID-microvascular thrombosis and angiopathy.


Subject(s)
COVID-19 , von Willebrand Factor , ADAMTS13 Protein , Humans , SARS-CoV-2 , Thrombospondin 1
6.
Br J Haematol ; 192(4): 714-719, 2021 02.
Article in English | MEDLINE | ID: covidwho-978695

ABSTRACT

Endothelial cell (EC) activation plays a key role in the pathogenesis of pulmonary microvascular occlusion, which is a hallmark of severe coronavirus disease 2019 (COVID-19). Consistent with EC activation, increased plasma von Willebrand factor antigen (VWF:Ag) levels have been reported in COVID-19. Importantly however, studies in other microangiopathies have shown that plasma VWF propeptide (VWFpp) is a more sensitive and specific measure of acute EC activation. In the present study, we further investigated the nature of EC activation in severe COVID-19. Markedly increased plasma VWF:Ag [median (interquatile range, IQR) 608·8 (531-830)iu/dl] and pro-coagulant factor VIII (FVIII) levels [median (IQR) 261·9 (170-315) iu/dl] were seen in patients with severe severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Sequential testing showed that these elevated VWF-FVIII complex levels remained high for up to 3 weeks. Similarly, plasma VWFpp levels were also markedly elevated [median (IQR) 324·6 (267-524) iu/dl]. Interestingly however, the VWFpp/VWF:Ag ratio was reduced, demonstrating that decreased VWF clearance contributes to the elevated plasma VWF:Ag levels in severe COVID-19. Importantly, plasma VWFpp levels also correlated with clinical severity indices including the Sequential Organ Failure Assessment (SOFA) score, Sepsis-Induced Coagulopathy (SIC) score and the ratio of arterial oxygen partial pressure to fractional inspired oxygen (P/F ratio). Collectively, these findings support the hypothesis that sustained fulminant EC activation is occurring in severe COVID-19, and further suggest that VWFpp may have a role as a biomarker in this setting.


Subject(s)
COVID-19/blood , Endothelial Cells/metabolism , Protein Precursors/blood , SARS-CoV-2/metabolism , von Willebrand Factor/metabolism , Adult , Aged , Biomarkers/blood , Endothelial Cells/pathology , Female , Humans , Male , Middle Aged , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL